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Preface

The advent of high-speed civil transport aircraft (HSCTs) some 25 years

ago generated considerable concern about potential impacts on the strato-

sphere. With interest in such aircraft again increasing, the National Aero-

nautics and Space Administration initiated an assessment of the potential

stratospheric impacts of a substantial increase in the use of HSCTs. This
assessment was intended to examine, from the standpoint of present scien-

tific understanding, the potential atmospheric impacts of a fleet of high-
speed civil transports flying supersonically in the lower stratosphere. The

program was initiated in 1991, and the bulk of its research is scheduled to

be completed in 1995, although it may be extended. In early 1993 NASA
asked the National Research Council to review its efforts.

The panel established by the NRC Board on Atmospheric Sciences and

Climate (BASC) was requested to ascertain whether key uncertainties had

been identified, and whether the NASA program would reduce those uncer-

tainties sufficiently that policies regarding environmental constraints on high-

speed transports could be formulated. To this end, the panel was asked to

evaluate whether the present state of knowledge was accurately reflected in

a 1993 NASA interim report on the assessment program, and to identify any
additional research that should be conducted before 1995, or thereafter, to

reduce these uncertainties. At NASA's request, the independent technical

review presented in this document provides both an evaluation of the qual-

ity and completeness of the research program and recommendations for
improvements.

vii



viii PREFACE

The potential stratospheric impacts of aircraft were addressed in some

detail in the early 1970s by the U.S. Department of Transportation under

the Climatic Impact Assessment Program (CLAP). One conclusion of CIAP

was that stratospheric ozone might be highly vulnerable to exhaust from

aircraft engines. Controversy surrounding this conclusion, along with the

recognition that substantial depletion of stratospheric ozone would repre-

sent a serious environmental concern, were among the factors that discour-

aged the United States from developing supersonic transport aircraft. Now

a new understanding of stratospheric dynamics and chemistry flowing from

continued research, advances in aircraft technology, and a perception that

significant markets exist for HSCTs all encourage a re-examination of the

issue. The NASA study being reviewed here is thus timely and appropriate.
The panel expresses its appreciation to the NASA program admin-

istrators and participating scientists for their cooperation. Information was

shared fully with the panel, and special efforts were made by NASA to

provide informative reviews for the panel's use. In particular, Mr. Howard

L. Wesoky, Dr. Richard S. Stolarski, Dr. Robert T. Watson, and Ms. Kathy

A. Wolfe were very helpful. Moreover, the panel greatly appreciates the

assistance of the BASC staff, including Mrs. Doris E. Bouadjemi, Ms. Ellen

F. Rice, and Dr. William A. Sprigg.

John A. Dutton, Chairman

Board on Atmospheric Sciences and Climate
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Executive Summary

The development of a fleet of high-speed civil transport (HSCT) air-

craft for stratospheric flight is being given serious consideration by the

aeronautics community, as it appears that such aircraft may be not only

technologically feasible but also economically advantageous. The financial

considerations in such a program involve major commitments by industry,

however; sales estimates as high as $100 billion for a fleet of approximately

500 aircraft have been made. To investigate the scientific and technological

considerations involved before such large sums are committed, NASA has

established the High-Speed Research Program (HSRP), elements of which
include engine and airframe conceptual development, and materials science.

A major concern about the development and operation of a fleet of

supersonic aircraft is the prediction of its possible environmental conse-

quences. The principal atmospheric impacts are expected to be ozone depletion

and/or redistribution, and climate effects. For the purpose of assessing the

degree to which concern over those impacts is warranted, NASA has estab-

lished as part of HSRP a program of research on the atmospheric effects of

stratospheric aircraft, AESA. It is this effort that is the subject of the

present evaluation.

The approach taken by AESA--indeed, the only approach likely to

provide a reasonable assessment of HSCT impacts--has been to employ

atmospheric chemical models so calculate the possible perturbations. Those

complex models require much conceptual and factual information in their
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formulation and operation, so AESA has supported certain observational

and laboratory studies in addition to the computer model work.

To provide an independent evaluation of how well the AESA program
is meeting the needs for which it was created, NASA requested the National

Academy of Sciences' National Research Council (NRC) to establish a re-

view panel in January 1993. The NRC Panel on the Atmospheric Effects of
Stratospheric Aircraft was asked to review the AESA Interim Assessment

report (and additional relevant information that was made available) and to

respond to five questions. In addressing those questions, the panel per-

formed a review of important components of the program; the most impor-
tant conclusions are summarized below.

HSCT EMISSIONS AND PLUME PROCESSING

Aircraft operational and emission scenarios are crucial to model calcu-
lations investigating the effects of HSCTs. The construction of such sce-

narios has been a major part of the AESA program. AESA has done an

excellent job in constructing those scenarios for NO X and some other major
emissions. The panel recommends that similar scenarios be constructed for

sulfur dioxide and soot (particulate carbon), a modest task now that the

initial scenario work has been completed.

The immediate effect of HSCT emissions on the atmosphere in the

wake and extended region behind the aircraft must be described by a plume/

wake model. This effort is an important part of AESA's research program.
The panel recommends that additional, independent studies of plume/wake

processes be carried out so as to avoid conclusions based solely on the
results of one research group.

HOMOGENEOUS AND HETEROGENEOUS CHEMISTRY

Progress in laboratory chemistry sponsored by AESA has been very
impressive, particularly in the area of chemical reactions on surrogate aero-

sol surfaces. The panel recommends that further laboratory studies expand

the range of species to include sulfur dioxide and the principal organic

molecules likely to occur in HSCT emissions, and explore non-equilibrium
conditions responsible for solid particle formation.

OBSERVATIONS

The field measurements programs in which AESA has participated have

been meritorious, providing unprecedented information on 03, CIO, BrO,
OH, HO2, and related species. This is a substantial achievement that will

add considerable confidence to the predictions of computer models. In the
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near term, detailed analyses of this and all other relevant data are a high

priority. The panel recommends that future field programs emphasize other

species important for AESA and thus far not well characterized, such as the

composition and morphology of stratospheric aerosol particles and the con-

centrations of the reservoir molecules N205 and CIONO 2. In some cases,

support of instrument development will be required. From the standpoint of

geographical location, a northern high-latitude summer campaign should
have precedence over other observational options.

TRANSPORT AND DYNAMICS

Once exhaust emissions from HSCT aircraft are dispersed out of the

aircraft wake, their subsequent chemical evolution will be governed in ma-

jor ways by atmospheric transport, especially within flight corridors and

just above the tropopause. AESA has relied largely on previous under-
standing of these processes for its modeling work, hut such understanding

may be insufficient for spatially distinct HSCT scenarios. The panel rec-
ommends that 3-D models be used in addition to the current 2-D ones to

evaluate the build-up of aircraft effluents, that aircraft and Earth satellite

data (especially on the Mt. Pinatubo eruption) be employed in efforts to

increase the understanding of transport in critical atmospheric regions, and

that longer-term field programs consider making observations designed to

improve knowledge of transport and dynamics in HSCT flight corridors.

MODELING

Computer models for the assessment of atmospheric effects of strato-

spheric aircraft have been extensively supported by AESA. The scientists

who have participated in these tasks have completed a large series of in-

terim assessment calculations, including heterogeneous reactions in their

model formulations, and have compared the results of several modeling
efforts with each other. Much remains to be done by 1995, however. In-

creased 3-D modeling should have a high priority, as 3-D results constrain

many of the 2-D modeling approaches. The panel recommends that not

only comparative 2-D model results but also the reasons for differences be

addressed, that parametric sensitivity studies be initiated to attempt to en-

compass any "surprise" scenarios that may arise, that the implications of

modified tropospheric chemistry (including organic chemistry) be addressed,

that more extensive comparisons of model results with all applicable data

be accomplished, and that new efforts in modeling microphysical aerosol

processes be initiated to guide parameterization in larger-scale models.
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OTHER TOPICS OF IMPORTANCE

The eruption of Mt. Pinatubo in 1991 has provided, in addition to pos-
sible data for assessing transport, a potential test case for the influence of

equatorial and midlatitude stratospheric aerosols on chemistry at HSCT flight
altitudes and geographical locations. The panel recommends an extensive,

coordinated analysis of the evolution of the Mt. Pinatubo aerosol cloud with

the object of calibrating chemical models and sensitivity studies within the
AESA program.

It is well within the realm of possibility that an HSCT fleet might have

deleterious impacts on climate through perturbations in water vapor and

additional cloud formation, generation of new aerosol particles, and changes

in the vertical distribution of ozone that might even result in altering the
altitude of the tropopause. AESA has not yet addressed climate modifica-

tions as part of its program, although it acknowledges the need to do so.

The panel recommends that the nature and magnitude of potential HSCT-
related climatic changes be promptly and carefully evaluated.

PROGRAM MANAGEMENT

AESA, as an applied science program, has the responsibility of provid-
ing an assessment of the potential atmospheric impact of an HSCT fleet that

is not only credible but also timely enough to offer maximum guidance to
the aeronautics community. Fulfilling this mission requires that AESA

objectives be clearly established, that program elements be related directly

to those objectives, that progress be actively monitored, and that the pro-

gram be modified if needed. AESA has supported research that is of great

intrinsic merit and contributes substantially to the general understanding of

atmospheric processes. The panel feels, however, that significant portions

of the work have not been directed toward specific AESA needs, resulting
in overexploration of some HSCT topical areas and insufficient attention to

others. The panel recommends that specific scientific goals be established

and widely disseminated within the HSRP/AESA community, that scientists

be sought to address critical areas of research for which suitable proposals

have not been forthcoming, and that goal realization and monitoring be

explicitly included as aspects of program management. To accomplish these

tasks, it recommends an increase in hands-on guidance and coordination by

the Program Scientist, perhaps requiring the expansion of this position to

full time, and a change in the role of the Science Advisory Committee to

that of a Scientific Steering Committee charged with more active program
oversight.

Finally, on the basis of discussion throughout this report, the panel

responds specifically to the five questions in its original charge as follows:
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1. Does the 1993 NASA HSRP/AESA Assessment accurately re-

flect the current state of scientific knowledge pertinent to HSCTs?

Yes, on the whole, and in several areas AESA can rightly claim to have

markedly enhanced the general understanding of atmospheric chemistry.
However, some relevant information external to the program has not been

incorporated into the perspectives and analyses of AESA, such as data from

orbiting satellite platforms and European in-flight aircraft emissions. The

potential for ozone depletion and related climate effects arising from the

injection of aerosol particles from stratospheric aircraft also needs to be

more extensively explored.
2. Have the key scientific uncertainties relevant to the atmospheric

effects of stratospheric aircraft been identified?
To answer this question, the panel first compiled its own list of key

uncertainties. In the opinion of the panel, the top three key uncertainties

are:

• Dispersion of HSCT emissions in the stratosphere
• Physical and chemical properties of stratospheric aerosols and their

precursors
• The climate effects of the HSCT fleet.

Also important, but perhaps less crucial, are the following five areas:

• HSCT operational scenarios and the magnitudes of their associated
emissions levels

• Plume and wake microphysics and chemistry

• The adequacy of 2-D models for HSCT assessment (essentially a

3-D problem)
• The specification and accomplishment of model sensitivity studies
• Threshold effects and other areas that might harbor surprises.

The only items in the above list that appeared in the original AESA
Research Announcement were emissions, climate, and plume/wake processes.

The lists of current and projected key uncertainties provided by the Program

Manager at the request of the panel include dispersion, 2-D models, and

possible surprises. The rapid progress in atmospheric science makes it
reasonable that such evolution in the definition of key uncertainties should

occur. In the opinion of the panel, however, gas-phase atmospheric chemis-

try measurements have been overemphasized, whereas aerosol particle ob-
servations and their interpretation, studies of dispersion, investigation of

potential alteration in the atmosphere's thermal balance, and most particu-

larly model sensitivity studies should have been identified as key research

elements early in the program, and should have remained so.



0 ATMOSPHERIC EFFECTS OF STRATOSPHERIC AIRCRAFT

3. Is the NASA/AESA program appropriately designed, within funding
constraints, to reduce the key uncertainties?

In many cases, but not all. Many of the AESA program elements have

definitely contributed to a reduction in key uncertainties. However, the

program goals, as well as the plans for monitoring progress toward those

goals, have sometimes not been completely clear. As a result, the alloca-

tion of funds has at times been inconsistent with the AESA key uncertain-
ties. For example, significant AESA funds were committed to the Perseus

program, which will yield most of its results beyond AESA's 1993-1995

time frame, rather than to detailed analysis of already existing relevant data,

such as Upper Atmosphere Research Satellite measurements of the global
distribution of aerosols and long-lived tracers.

4. Are there major research activities currently not funded that
would likely reduce the scientific uncertainties before 1995?

The broad subjects being funded by AESA (modeling, field observa-

tions, laboratory studie,_, emissions assessment) are clearly appropriate for

the task of reducing scientific uncertainties. In the view of the panel,

however, some changes in funding structure and emphasis appear advisable.

Among those for which the panel recommends augmentation of effort are:

• Three-dimensional chemical assessments, with more attention to

incorporating data from satellites

• Parameter space sensitivity studies in 2-D models

• Examination of HSCT effects on climate, especially those pertain-
ing to water vapor and ozone

• Organic chemistry in the upper troposphere

• Additional, independent studies of plume/wake processes

Not enough time is available before AESA is scheduled to end to per-
mit substantive changes to be implemented in the observational measure-

ment program. Howew_r, it would be advisable to place greater emphasis

on modeling and interpretation of data already in hand, specifically on HSRP
issues.

5. Will major scientific uncertainties remain after 1995? If so,

what types of research efforts could significantly reduce those uncer-
tainties within a few years?

Further research in the post-1995 time frame will clearly increase the

level of confidence of any subsequent assessments. The panel recommends
attention to five specific areas in the post-1995 time frame:

• Long-term, systematic monitoring that integrates in situ measure-

ments, satellite observations, and 3-D model assimilations with the specific

goal of improving understanding of stratosphere-troposphere exchanges
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• Increased use of 3-D models to assess ozone depletion and climate

changes, including both sensitivity studies and intercomparisons of model

performances and differences
• Measurements in aircraft wakes, flight corridors, and, where appro-

priate, wind tunnels to validate plume/wake and mesoscale models
• A high-latitude summer aircraft field program, emphasizing con-

densed-phase species
• The use of microphysical models for studies of aerosol particle

formation, phase transitions, and particle size distribution evolution.

In addition, the panel encourages AESA to forge strong cooperative

links with other relevant programs, particularly the NASA program on ef-
fects of subsonic aircraft now beginning, as long as those cooperative ef-

forts do not dilute the progress of AESA toward its own particular goals.
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Introduction

The ever-increasing pace of globalization has brought with it renewed

interest in faster civil transport aircraft. Recent studies by the National

Aeronautics and Space Administration (NASA) and others have indicated
that modern technology and engineering approaches are capable of design-

ing and building high-speed civil transports (HSCTs) that are economically

advantageous. This realization, together with the obvious international im-

plications of such an effort, resulted in NASA's setting up programs in the

late 1980s to address technology issues that required resolution before such

aircraft were designed. At the same time, programs were established to

deal with concerns regarding community noise, sonic booms, and atmo-

spheric impacts. The last of these topics is perhaps the greatest potential

impediment to flying the HSCTs, since these atmospheric impacts may be

very difficult to predict accurately. Thus, the Atmospheric Effects of Stratospheric

Aircraft (AESA) segment of NASA's High-Speed Research Program (HSRP)

is of great importance, and its conclusions (and their likely reliability) are
of considerable interest, particularly to manufacturers. AESA may continue

beyond 1995, but it has already produced several summaries of its scientific

activities, including the 1993 interim assessment that is the primary focus
of this report.

9
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SCIENTIFIC ISSUES RELATED TO ATMOSPHERIC EFFECTS
OF STRATOSPHERIC AIRCRAFT

Concerns regarding the influence of stratospheric aircraft emissions on

the atmosphere were first raised in the 1970s. The primary atmospheric

focus at that time was :he effect of emissions on stratospheric ozone con-

centrations, because ozone is susceptible to catalytic decomposition by gases

present in very small concentrations. The most common catalytic cycle can
be expressed as

XO + O_ --_XO 2 + O4

XO x + O -+ XO + O_

Net: O_ + O --->202

where X can be N or H (among others). The concern with respect to

stratospheric aircraft was that water vapor (a precursor to HO) and NO x
(NO + NO_) are emitted from jet aircraft engines. This concern continues

today with respect to a prospective HSCT fleet. Specific features of aircraft

influences on ozone include changes in total column abundance (important
to penetration of ultraviolet radiation), modification of vertical concentra-

tion profile (important to the temperature structure of the atmosphere), and

the geographical and temporal variability of these properties.

In addition to NO and water vapor, jet aircraft engines also emit CO 2,
CO, soot, sulfur gases, various types of organic molecules, and other trace

constituents. This ensemble of species may have the potential not only to

perturb ozone but also to induce climate change through, for example, in-

creased cloud extent, added aerosol particles (sulfur-containing gas, soot),

and added infrared-absorbing molecules (e.g., H20).
An initial assessment of the potential atmospheric effects of HSCT may

be made by comparing estimates of the concentrations of effluents that will

result from fleet operations with the ambient background concentrations.

This is done in Table 1 on page 11 of the Interim Assessment. That table

indicates increases in NO (up to 250 percent), H20 (up to 40 percent), SO
(up to 40 percent), H2SO 4 (up to 200 percent), soot (up to 100 percent), and

CO (up to 20 percent). These comparisons, all for a "broad corridor at
northern midlatitudes," demonstrate the need for a detailed assessment of

possible HSCT influences on the atmosphere.
Whether significant effects on ozone or climate will occur as a conse-

quence of emissions from a fleet of supersonic aircraft depends on many

different factors, including the rate of emissions from a single aircraft, the
size of the aircraft fleet, the geographical and altitudinal distribution of the

emissions, the rapidity and efficiency with which those emissions are mixed
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into the general atmosphere, the chemical composition of the fuel, and the

chemical and physical transformations. The emission rates from engines

characteristic of potential HSCT aircraft obviously cannot be measured,

since the engines have not yet been built. Similarly, the atmospheric effects

resulting from a given prospective scenario of emissions cannot be mea-

sured directly. Thus, detailed predictions of atmospheric effects must be

made using computer simulation models. In order to obtain realistic predic-
tions with these models, one must bracket reasonable projections of emis-

sions with a combination of historical emission experience and new engine

design concepts. Furthermore, the models require specification of the at-

mospheric radiation field, chemical-reaction and phase-transformation pa-

rameters, atmospheric transport, and so forth.

THE HSRP/AESA PROGRAM

The AESA component of the NASA HSRP began in FY 1990 and has

an approved budget plan through FY 1995. Its charge (as interpreted by the

panel authoring this report) is to lay the knowledge base that will allow
intelligent decisions to be made on acceptable emission rates and fleet

operations for HSCTs. HSRP and its components, including AESA, need to

produce robust and reliable results if HSCTs are to be built, since the poten-
tial engine and airframe expense is very great; the potential rewards are also

great, however--perhaps $100 billion in sales for a fleet of approximately
500 aircraft.

AESA activities have been guided by a NASA Program Manager and

by Program Scientists, in consultation with a distinguished Scientific Advi-

sory Panel drawn mainly from the community of atmospheric scientists.

The research that has been performed has included field and laboratory
measurements, model-related theoretical studies, and computer model as-

sessments. A number of these activities have been performed in conjunc-

tion with NASA's Upper Atmosphere Research Program (UARP) and At-

mospheric Chemistry Modeling and Analysis Program (ACMAP).
It is important to put the scale of AESA activities into perspective vis-

_-vis other related programs. The overall HSRP budget has been about $70

million per year, most of which is directed toward studies of aircraft and

engine technology and materials. Within this program, AESA's annual

budget is about $6 million for FY 1990 through FY 1995, or a total of about
$36 million. In contrast, UARP's annual budget during that time period has

averaged $20 million; ACMAP's, $6 million. Thus, the AESA program
exists in an environment that includes the related research of the UARP and

ACMAP programs, and is building on a research and knowledge base that is

much greater than could be afforded by AESA alone. In the judgment of

the panel, reliance on this research and knowledge base is appropriate and
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indeed crucial to the success of the program. However, there is potential

for compromising the objectives of AESA through, for example, piggy-

backing research missions onto other existing studies that may be in loca-

tions, altitudes, or seasons that are not optimal for meeting AESA require-
ments.

Given its charge, AESA is obviously a directed scientific program.
Consequently, several unique aspects of AESA distinguish it from a number

of more general programs in atmospheric science research. Among them

are the studies of the effects of atmospheric emissions occurring at high
altitudes and within discrete flight corridors; the focus on plume dispersion

and wake chemistry; the emphasis on stratospheric/tropospheric air exchange;

and the implications of stratospheric aerosol injection and its effects at mid-

latitudes. These aspects must be covered thoroughly by AESA, as they are

not central topics in other atmospheric research programs.

The Principal Investigators involved in the AESA program include many

scientists of extremely high caliber. Among their accomplishments are the
development of data sets and scenarios for past and future aircraft emis-

sions, laboratory studies of heterogeneous chemistry, and coordinated air-

borne measurements of key chemical species. Other programs within AESA

show promise of producing results of direct usefulness to the program be-

fore 1995; these include the efforts in plume and wake modeling and in
hydroperoxy (HO2) and sulfur chemistry. In order to permit more conclu-

sive results to be reached, NASA plans a continuation of HSRP beyond
1995.

THE NATIONAL RESEARCH COUNCIL ASSESSMENT PANEL

To provide an independent assessment of how well the AESA program

is meeting the needs for which it was created, in late 1992 NASA requested

the National Academy of Sciences' National Research Council (NRC) to

establish a review panel. The charge to this Panel on Atmospheric Effects
of Stratospheric Aircraft was to review the AESA Interim Assessment docu-

ment and other program information and to address the following five ques-
tions:

1. Does the 1993 NASA HSRP/AESA Assessment accurately reflect
the current state of scientific knowledge pertinent to HSCTs?

2. Have the key scientific uncertainties relevant to the atmospheric
effects of stratospheric aircraft been identified?

3. Is the NASA/AESA program appropriately designed, within fund-
ing constraints, to reduce the key uncertainties?

4. Are there major research activities currently not funded that would
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likely reduce the scientific uncertainties before 1995? (The 1995 date was

specified because funding is currently approved through FY 1995.)

5. Will major scientific uncertainties remain after 1995? If so, what

types of research efforts could significantly reduce those uncertainties within

a few years?

Although the Panel on Atmospheric Effects of Stratospheric Aircraft

was not formally established until January 1993, a number of members who
would eventually be named to the panel heard a report of scientific progress

in the HSRP at a workshop held in December 1992. In the course of

performing its assessment the panel met five times:

• December 16-17, 1992, at the AESA Workshop in Boulder, Colo-

rado, to receive initial overview information on the NASA HSRP/AESA

program.
• February 9-10, 1993, at the NASA Lewis Research Center in Cleveland,

Ohio, to receive presentations on the general themes of aircraft and engine

design, engine emissions, and wake effects.

• April 22-23, 1993, at the NRC facility in Washington, D.C., to

receive presentations on the general themes of relevant atmospheric chemis-

try, atmospheric measurements programs, and computer models of strato-

spheric impacts.
• June 7-11, 1993, at the HSRP/AESA Annual Meeting in Virginia

Beach, Virginia, to attend presentations of AESA research results and to

begin reviewing drafts of the panel's report.

• August 2-5, 1993, at the NAS Study Center in Woods Hole, Massa-
chusetts, for discussion and work on the report.

OUTLINE OF THIS REPORT

The NRC Panel on Atmospheric Effects of Stratospheric Aircraft has

chosen to evaluate the AESA program by discussing in Chapter 2 six scien-

tific issues, as they are addressed by AESA and as they are viewed by the

panel. In Chapter 3 the panel comments on the accomplishments of the

AESA program: in particular, how successful AESA has been in identify-

ing the key uncertainties relevant to HSRP and in implementing a directed

program to resolve those uncertainties to the degree possible on the time

scale of the program. Last, Chapter 4 presents recommendations for the

time period 1994-1995 and for possible continuation of the program after
1995.





2

Scientific Issues Relevant to Evaluating

Atmospheric Effects of An HSCT Fleet

This chapter presents discussions of six scientific issues related to HSRP:

emissions and plume processing, homogeneous and heterogeneous chemis-

try, observations, transport and dynamics, other possible effects of HSCT

effluents, and modeling. These issues generally correspond to chapters in
the AESA Interim Assessment, except that the panel has combined two

AESA topics (Exhaust Characterization and Operational Scenarios) and

added two topics (Transport and Dynamics and Other Possible Effects).

HSCT EMISSIONS AND PLUME PROCESSING

Evaluation of the potential atmospheric impact of emissions from HSCTs

requires a scientifically sound understanding of the nature and quantity of

emissions from all prospective and existing types of aircraft and a knowl-

edge of the operations of the total global aircraft fleet, in order to provide

input to atmospheric models.
Emissions from aircraft comprise both those that are generated by the

combustion process in the engine and those that are related to the airframe,

such as the systems supporting flight operation or passengers. The exhaust
emissions from the engines are expected to be dominant. These are func-

tions of engine technology, of the operation of the aircraft on which the

engines are installed, and of the fuel composition. It has also been recog-
nized that a number of the dynamic and chemical processes that may occur

in the engine exhaust plume and aircraft wake could significantly modify

15
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the emitted substances by the time they have been sufficiently dispersed to

be regarded as inputs to the atmospheric models. Among these processes

are entrainment of the engine exhaust plumes in the lift-inducing vortices of

the aircraft, with possible resultant spatial localization of species and verti-
cal transport of the partially mixed wakes; formation of sulfate aerosols;
and generation of contrails.

Development of a comprehensive understanding for both current and

future situations will thus require:

• Generation of appropriate fleet-operation scenarios for both sub-
sonic and HSCT fleets

• Reliable estimations of emissions outputs and generation of a three-
dimensional global emissions database for the chosen scenarios

• Development of a plume-processing model incorporating both dy-
namics and chemistry

• Validation of the plume model with measurements

Research into low-NO x combustor technology for HSCT engines is be-

ing carried out in a program parallel to AESA within HSRP. Preliminary
results from this program, in terms of minimum achievable levels of emis-

sions, will be available only toward the end of the current HSRP time

frame. Actual engines, and hence actual emission levels, will not be avail-

able until at least the end of the decade. As a consequence, a range of NO x
emission limits, spanning those likely to be imposed on HSCT engines
operating at supersonic cruise conditions, has been chosen for use in the

AESA program.

The assessment gives an excellent summary of the very comprehensive

program of work undertaken to develop operational scenarios and to gener-

ate a three-dimensional emissions database. This program has included

usage and regional distribution worldwide for all types of aircraft (sched-
uled, charter, cargo, military, turboprop, and more), and has taken into

account anticipated passenger demand, HSCT cruise speeds and flight pro-

files, and city-pair networks. Prediction of aircraft-engine flight perfor-

mance has been based on well-proven aerodynamic and engineering rou-

tines. Emissions ha,,e been estimated using widely accepted combustor

correlations. Generic approaches have been taken where possible in order

to simplify the possible combinations and make the computational require-
ments manageable.

In common with much of the rest of the AESA program, the emissions

inventory's emphasis has been on NO x. The current three-dimensional glo-
bal emissions database (due to be delivered by the end of 1993) is limited to

fuel burns and emissions of NO x. CO, and total gaseous hydrocarbons. It

represents one of the most comprehensive and realistic inventory projec-
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tions ever developed. Moreover, from the fuel composition and combustion

rate, emissions of CO 2, water vapor, sulfur, and perhaps particulate carbon
(soot) can be estimated. More important, however, is that the methodology

and framework required for such a database have been thoroughly devel-

oped, and will allow other operational scenarios and chemical species of
relevance to HSCTs to be incorporated very easily. The species have been

clearly identified and prioritized, as have recommendations for the develop-
ment of advanced instrumentation for use in conjunction with the HSCT

combustor research program. These instruments could provide realistic

measurements of NOy and particle characteristics, and would be important
inputs not only to plume and wake models but also to chemical kinetics
studies. It is therefore essential to keep to planned schedules.

Although the Interim Assessment report identifies a number of scenario
issues that might be addressed (e.g., seasonality of operations, routing variations,

and rate of introduction of HSCTs), they are expected to be second-order

effects and to introduce only small improvements in assessments. How-

ever, sensitivity studies of these issues are perfectly feasible and could be
carried out before the end of the current HSRP. Such studies would im-

prove the overall understanding of the consequences of possible spatial and
temporal variations of emissions input by HSCTs.

The plume-processing model being developed is based on aerodynamic

studies that go back to the Climatic Impact Assessment Program of the

1970s. They have subsequently been extended, with experimental verifica-

tion, by other programs and codified as UNIWAKE. However, UNIWAKE

does not explicitly address either exhaust-gas entrainment into the wing
vortex structure or the subsequent chemical or condensation processes. The

current AESA program is addressing these issues, and the assessment gives

a good summary of the approaches adopted.
One key issue is the nature and rate of formation of new particles by

condensation processes within the plume. This has been recognized, but the

appropriate theory is not yet sufficiently advanced, and appropriate mea-

surements are sparse.
The plume/wake region is the key interface between aircraft emissions

and the atmosphere. The chemical processes occurring here have the poten-

tial to strongly influence the nature of what is being transported and dif-

fused away from the principal source, and will offer clues as to possible

mitigation measures should they be needed. Thus, there must be a high

degree of confidence in the understanding and quantification of the pro-
cesses involved. The fact that all of this work is being carried out by a

single group within AESA is therefore of concern, and consideration should

be given to possible independent development of other models and to evalu-

ation of work being undertaken elsewhere.

Experimental validation of the plume and wake evolution, i.e., a di-
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rected field measurements program, will eventually be necessary to provide

confidence that the model accurately expresses the nature and level of those

emissions. Such measurements are not anticipated within the current AESA
program. However, some limited data on aircraft wake measurements do

exist and should be used as a first step. Support should be provided for

further experimental validation, possibly using wind tunnels.

HOMOGENEOUS AND HETEROGENEOUS CHEMISTRY

Our present understanding of the basic atmospheric chemical processes

that would be affected by a fleet of stratospheric aircraft in the next century
is somewhat reminiscent of the situation that prevailed in the 1970s, when

the Climatic Impact Assessment Program's studies took place. Ozone-loss
predictions varied enormously from year to year as advances were made in

the measurements of key reaction rates and in understanding the different

chemical cycles and their reservoir species. By the early 1980s the per-

ceived seriousness of the stratospheric ozone problem had considerably di-
minished; small ozone decreases caused by chlorine released from chloro-

fluorocarbons (CFCs), rather than by gases released from the engines of

stratospheric transports, were predicted to occur at some time in the twenty-
first century. This false sense of security was rudely disturbed by the

discovery of large ozone losses in Antarctica during the spring months.

These losses were subsequently shown to be caused by reactions involving

chlorine, after preprocessing of the inorganic chlorine and nitrogen com-

pounds on surfaces of stratospheric particles (i.e., by heterogeneous reac-
tions).

The potential ozone loss caused by the operation of a substantial fleet

of stratospheric aircraft, as predicted by the present assessment, is reduced

by the inclusion in the overall stratospheric chemical scheme of a very

efficient heterogeneous loss of active nitrogen compounds (NO, NO> N205)
to inactive forms (HNO3) through sequestering N205 as HNO 3 by the reac-
tion

N205 + H20 -+ 2HNO 3

The high efficiency of this conversion on liquid aerosol surfaces in the

stratosphere greatly reduces the steady-state NO x concentration and thereby

reduces the effectiveness of 0 3 removal by NO X emitted from stratospheric
aircraft. While clearly very important, these findings are not sufficient to

establish the impact of HSCTs upon the atmosphere, since many other chemical

processes are potentially important and other effluents must be considered.

To develop an improved quantitative assessment of the chemical pro-

cesses coupling HSCT emissions to ozone and climate impacts, detailed
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information is required on the following: critical gas-phase reaction rate

constants, phase equilibria of sulfate-water and nitric acid-water aerosol

particles, and rates of reactions of chlorine-, nitrogen-, and sulfur-contain-

ing species on frozen or supercooled stratospheric aerosol surfaces. A sig-

nificant portion of the AESA effort has been devoted to dealing with these
issues.

The chemistry program associated with the AESA is of high quality and

is being carried out by some of the most able laboratory scientists in the

world. It has many features to recommend it and has already produced

excellent science, particularly in the area of understanding multiphase pro-

cesses at low temperatures. Detailed studies have addressed phase equilib-

ria, the chemical mixtures giving rise to the formation of stratospheric hy-

drometeors, and the sensitivity of phase change within the hydrometeors to

composition change of binary and ternary mixtures of H20, H2SO4, and

HNO.v The problem of supercooling of liquid forms is also addressed,
although more studies are needed of non-equilibrium situations involving,
in addition to nitric acid trihydrate (NAT) particles, possible metastable

hydrates of nitric acid. There is substantial agreement in the findings, and

differences in results between individual investigators are being resolved.

The measurements can readily be incorporated into current models of stratospheric

chemistry if one assumes, as seems reasonable, that the mixtures of H,O/

HNOJH2SO 4 chosen to reproduce the atmospheric situation in the labora-
tory conform to reality.

The mechanisms and kinetics of some important heterogeneous reac-

tions, such as CIONO 2 + H20 and N205 + H20, have also been studied in
detail. The latter reaction has been shown to occur very efficiently on all

likely stratospheric liquid aerosols, although it will not occur on dry aero-
sols.

Other important aspects of the chemistry of the lower stratosphere now

need AESA emphasis. For example, in the absence of an effective NO x

ozone removal cycle, a large percentage of ozone removal in the lower

stratosphere outside polar regions occurs by HO x reactions. This means

that the reactions of OH and HO 2 with stratospheric trace components must

be re-examined in detail. Particular emphasis should be placed on the
influence of water vapor concentration at low temperatures on these reac-

tions. The role of unstable reservoirs for NO other than CIONO 2, such as

HO2NO 2 and organic nitrates, also needs to be considered. Careful labora-
tory measurements of photolysis rate coefficients for a range of molecules
are needed as well.

Another concern has to do with the balance of studies between per-

turbed and unperturbed atmospheres. Recent analyses of the ozone problem

have directed attention away from the NO removal cycle as a result of the
high stratospheric aerosol loading caused by the Mr. Pinatubo eruption. At
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the lower aerosol loadings that were typical of much of the 1940s, 1950s,

and 1960s, the N205 hydrolysis reaction could be less efficient, raising the
possibility of greater ozone loss associated with HSCT operation than would

be the case in the present atmosphere. This emphasizes the need for an-

other look at the sensitivity of the NeO _ + H20 reaction rates and modeled
HSCT influences on ozone to aerosol loading. The kinetics program also

needs to take into account the chemistry of the upper troposphere, where

organic molecules are more abundant. Studies could well be extended to

include reactions involving organic as well as inorganic species, particu-

larly organic nitrates.

A final area in which more effort is now appropriate is the heteroge-

neous chemistry of SO 2 in the presence of other reactants. In the tropo-

sphere SO 2 is oxidized mostly in water and/or aerosol droplets. The main

oxidants are H202 and 03 . In the stratosphere an additional oxidant is
hypochlorous acid, HOC1, whose gas-phase reaction with SO 2 proceeds at a

rate that is diffusion limited. Reaction of SO 2 on stratospheric aerosols may

slow the release of active chlorine from CIONO 2 and HCI reservoirs. Ex-
amination of this area is encouraged.

OBSERVATIONS

Cooperative observation programs have been conducted by AESA and

the Upper Atmosphere Research Program (UARP) during the second Air-

borne Arctic Stratosphere Expedition (AASE II) and the Stratospheric Pho-

tochemistry, Aerosols, and Dynamics Expedition (SPADE). In addition,

future observations are planned during the Antarctic Southern Hemisphere

Ozone Experiment (ASHOE) and the Measurements for Assessing the Ef-

fects of Stratospheric Aircraft (MAESA) program. Together, these pro-

grams represent a unique and impressive effort to reduce present uncertain-

ties in understanding of the background composition of the lower stratosphere.

The measurements have provided key data for AESA's purposes, including

unprecedented information on 03, CIO, BrO, OH, and HO 2, as well as on

NOx/NOy, H20, and atmospheric tracers in the lower stratosphere. This
part of the reported work is one of the essential elements for validating the
assessment models.

Partly because of its timing and that of the field campaigns, the obser-

vations presented in the AESA Interim Assessment are limited largely to

the major findings of the AASE II campaign. The assessment does not

consider information obtained during other field campaigns that is relevant,

even essential, to the HSRP, and does not explain the relevance of the

planned SPADE and MAESA observations. It is not clear how the latter

observations will be incorporated into the HSRP models, or whether steps

will be taken to deal with unmeasured species or to narrow uncertainties.
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The Upper Atmosphere Research Satellite (UARS) measurements of the

global distribution of stratospheric aerosols and long-lived tracers should be

particularly useful, and in fact analysis of all the available data is of compa-

rable priority to new field campaigns.
The Interim Assessment report demonstrates that there are several gaps

in the observational program: for example, the need to develop instrumen-

tation to investigate the detailed composition and morphology of aerosol

particles, to determine the concentration (in situ) of key chemical species

such as CIONO 2 and N205, and to investigate dynamical processes in the

lower stratosphere in greater detail. (The measurements of NOy in the

spring 1993 AESA/SPADE field experiments were an important step in this
direction.) HSCT sulfur gas emissions and their effect on the stratospheric

sulfur budget need to be examined further, and the major gaseous sulfur

species, COS (carbonyl sulfide) and SO 2, should be observed. Also impor-
tant to the HSRP are observations of the distribution as well as the spatial

and temporal variability of stratospheric aerosols, and long-term measure-

ments employing balloon or lidar techniques are critical to monitor the

aerosol loading in the stratosphere. A northern high-latitude summer cam-

paign is recommended, both because model results indicate that the largest

local ozone changes from HSCT emissions occur during this season and

because the dynamics at that time of year are relatively quiescent, which
would make it easier to study the chemical balance issues that lie at the

heart of HSRP uncertainties.

An important dynamical process that is not fully addressed in the as-
sessment is the transport of tropospheric air into the stratosphere, particu-

larly its temporal variation. It is essential for assessing the effect of aircraft

emissions in this part of the stratosphere to know which portion of the air

mass injected will reside in the lower stratosphere, and over what time

period. UARS data should be useful in this context.
The HSRP/AESA observational program has not yet attempted in situ

measurements in aircraft plumes or travel corridors, although a few acci-

dental observations of aircraft emissions were made during SPADE. This

program element needs expansion; it could emphasize chemical conversion

in plumes and wakes, phase transformations in plumes and wakes, and the

time and space scales of diffusion of the species emitted. Cooperation with

European groups engaged in making such measurements would be fruitful.
Published data obtained in recent U.S. and non-U.S, aircraft campaigns are

also available, and effort expended in analyzing these studies might prove

highly valuable. Once the modeling activities progress to the stage where

plume and wake studies can be interpreted with confidence, plans should be
made to track higher-flying supersonic aircraft, such as the Concorde or

military aircraft. (This would probably require extra field campaigns.) Wind-
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tunnel studies of the chemical transformations in the plume could also be
helpful.

TRANSPORT AND DYNAMICS

Except for some initial chemical and physical processing of the gaseous

and aerosol emissions in the exhaust plumes and wakes of HSCTs, the

evolution of these effluents and their reaction products will be governed by

atmospheric transport and chemical processes. In particular, a portion of

these species will be transported downward into the troposphere by strato-
sphere-troposphere exchange processes, and another portion will be trans-

ported zonally, meridionally, and vertically within the stratosphere. Proper

assessment of these aircraft effects depends on both the photochemistry and
the transport being used within the assessment models. The vertical trans-

port is particularly crucial, in that the speed with which substances that are

relatively nonreactive at lower altitudes move to altitudes where they are

chemically transformed determines their atmospheric residence time. Hori-

zontal transport is significant in that it can move trace gases to regions

where their photochemical environment is very different (e.g., from low

latitudes to polar night conditions). Finally, the dispersive action of dy-

namics is important, in that the rates of some chemical reactions depend
nonlinearly on species concentrations.

The dispersal of gases and particles emitted from aircraft is an inher-

ently three-dimensional (3-D) process. Among the atmospheric processes

for which three-dimensional assessments are crucial is the modeling of po-
lar ozone depletion, in which heterogeneous chemistry is initiated in re-

gions where the temperature becomes colder than some critical value (e. g.,
where polar stratospheric clouds form). The airflow through these hetero-

geneous processing regions then leads to 'polar processed air." Both zonal

and meridional flow are important parts of this processing airflow, and

three-dimensionality is required to produce the temperature extremes prop-

erly. Three-dimensionality is important as well in determining the condi-

tions that lead to the occurrence of extremely high concentrations of aircraft

pollutants. These highest concentrations will tend to form in regions of low

wind speed and small wind shear. A thorough understanding of strato-

sphere-troposphere exchange processes and their inclusion in models is par-
ticularly important for lhe proper assessment of aircraft effects. Since HSCT

aircraft will deposit most of their effluents in the lower stratosphere, it is

essential to determine the rate at which the various components leave the

stratosphere and enter the troposphere, from which they will ultimately be
removed by wet and dly deposition processes.

All the AESA assessments have been made with two-dimensional (2-D)

models that use either lesidual or diabatic circulations: they are described in
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more detail in the Modeling section below. The concept is that the zonally

averaged transport of chemical constituents can be represented by average
north-south and vertical transport circulations, together with eddy-diffusion

terms to represent the nonzonal effects that range in horizontal scale from

planetary waves down to turbulence. The details of the transport specifica-
tions differ from model to model; two of the models include interactive

dynamics (to some extent), while another uses specified temperature fields
to derive the diabatic circulation; the other three use specified temperatures

and winds. While there are some similarities in the transport circulations
used in the six AESA assessment models, there are also differences. These

six models are generally representative of the 2-D models that are being

used for assessment of ozone depletion by CFCs and other interacting chemicals,

although newly developed methods for parameterizing the effects of plan-

etary waves in such models remain to be incorporated.
It is clear that the effects of a 2-D model's treatments of horizontal

diffusion, atmospheric circulation, and vertical transport across the tropo-

pause and the influence of these treatments on calculated HSCT-induced
ozone changes need to be well understood. This need is highlighted by the
Interim Assessment, which shows that ozone loss is more sensitive to NO y
increases at higher altitudes and, by implication, that the transport of in-

jected material from flight level to higher altitudes is a key factor in deter-

mining the ozone loss. Changes in model circulation or mixing formula-

tions that affect this transport should be studied, and observed values of

tracers such as CH 4, N20, and aerosols used to constrain the realistic range
of parameters.

A more systematic examination is needed of the reasons for differences

in ozone depletion predicted by the several models, and to what degree
those differences are explained by the parameterization of dynamics and

transport. Although differences in transport circulation in models have
been identified as one important source of the variability in the assessment

models' results, no quantification of these differences appears in the Interim
Assessment. Such assessments should be made. If, as expected, substantial

differences in the assessment results are seen when differing circulations

are specified within a given model, then a logical next step would be to

vary the circulation throughout the extreme range that might reasonably be

expected so as to obtain the extremes in the assessment results that would

result from differences in the transport uncertainties alone.

A dual approach seems indicated for improving knowledge about dis-

persion near HSCT flight corridors. First, it is recommended that currently
available satellite data and UARS data (including measurements of the Pinatubo

aerosol) be used to obtain better estimates of the transport circulation. This

has already been done to some extent, using heat budget calculations, "downward
control" calculations, and long-lived chemical-constituent data, but more
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effort in this area is needed to obtain better assessments by 1996. Second,

it would be advisable to consider aircraft flight experiments designed spe-

cifically to explore dispersion in atmospheric regions crucial to HSCT. Such

experiments probably cannot be mounted prior to 1996, but may well be
appropriate thereafter.

Two parallel strategies should be adopted for 3-D modeling between

now and 1996. First, 3-D models should be used to evaluate the build-up of

aircraft effluents, in order to estimate what extreme concentrations might
occur. "Box," or zero-dimensional, models should then be used to investi-

gate the occurrence of nonlinear or threshold effects. Second, at least one

3-D model should be used for ozone-depletion estimates in the 1995 assess-

ment. It should be compared to a similarly constructed (in terms of chemis-

try and zonally averaged transport) 2-D model to analyze the differences

that occur between 2- and 3-D assessments of HSCT operations. For in-

stance, localized intense vertical transports might occur in 3-D models, so

that greater 03 depletions would occur in the 3-D atmosphere than would be

modeled in the zonally averaged case. Also, as is recognized in the Interim

Assessment report, transport through the mid-latitude "tropopause break" is

not well modeled in the 2-D representations that are being used in the

assessment, and the effects of synoptic-scale circulations are not repre-

sented in 2-D models at all. For all of these reasons, additional work, using
3-D models, should be started as soon as possible and used for the 1995
assessment.

MODELING

AESA Modeling Activities

AESA's primary tool for assessing the impact of a fleet of HSCTs on

atmospheric ozone are six different 2-D (latitude and height) models of the

atmosphere; some additional process-related studies have been carried out

with 3-D models. They might be considered the capstone of AESA, since

they synthesize the information from all other parts of the AESA program

to make their predictions. Each modeling group has performed, at a mini-

mum, calculations assessing the effects of six HSRP scenarios differing in

Mach number, NO x emission index, and background chlorine loading. The
results have been presented largely as changes in annual average column
content of ozone at different latitudes. The HSCT-relevant results listed

below have been derived from this effort.

• For what has been presented as a median scenario, an HSCT fleet

with emission index of 15 (i.e., 15 grams of NO x emitted per kilogram of
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fuel burned) and Mach number 2.4, the column ozone depletion predicted

by all of the models falls within the range of about 0 to 2 percent.

• The inclusion of the N205 + H20 reaction in the models decreases
the importance of aircraft-related ozone loss, as it results in decreases in

NO x concentration.
• Because most of the HSCT flights will take place in the northern

hemisphere, the calculated ozone changes are larger there than in the south-

ern hemisphere.

• The calculated ozone loss is larger for higher emission indices of

NO and for higher cruise altitudes.
• Of four principal species in HSCT effluent, NO x and H20 are much

more important to stratospheric ozone depletion than are CH 4 and CO.

A second and commendable major effort of AESA related to models

was the convening of a Models and Measurements Workshop, which at-

tracted 14 different modeling groups, including all of those sponsored by
AESA. Its goal was to investigate how well the models were reproducing

relevant atmospheric data and how well the models agreed among them-

selves. Not all aspects of this goal were achieved, but a number of useful

conclusions were reached. Two particularly valuable ones were that model

results correlated reasonably well with measurements of long-lived gases in

the winter stratosphere away from winter poles but were less satisfactory in

the lower stratosphere, and that water injection and removal in the upper

troposphere and lower stratosphere had not been effectively addressed by

the models. Perhaps even more important, discrepancies among models

were identified for increased attention. They included inadequate formula-
tions of radiative transfer, inaccurate calculations of photolysis rates, and

problems with the derivation of global circulations.
The AESA modeling activity needs to address and resolve all possible

uncertainties associated with the models' predictions, given the time and

resources available. From this perspective, the panel identified four topics

related to modeling that are not currently emphasized and could benefit

from increased attention. These topics are discussed in detail in the subsec-
tions below.

Differences Among Models' Ozone-Depletion Predictions

Although the inputs to the scenarios evaluated were the same, the vari-

ous models yielded ozone-depletion results that differed in various degrees.

These are illustrated in Figure 1. While the models are qualitatively similar

(all predict increasing ozone losses for increasing NO emission index),
they are quantitatively different (not only the absolute values but also the

slopes of the ozone depletion as a function of emission index differ). For
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example, while the absotute values of the computed averaged ozone changes

in all of the models are below 3 percent for an emission index of 15, the

values vary by more than a factor of three. These variations may result

from differences in model transport, chemistry, numerics, or other factors.

For example, the roles of the various effluent components (NOy, H20 , CO,
sulfur, etc.) need to be probed individually and together, and the chemical

reasons for any cancellation between them should be understood. The work

to date focuses largely on NO x injections, but notes that HO chemistry

currently dominates the ozone budget of the lower stratosphere. It is criti-

cal to comprehend in detail how the chemical balance shifts as various

components are injected, so that the relative efficiencies of the different

catalytic cycles can be understood. Similar examples might be given for

other potential causes of differing results. Until substantial progress is
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made in comprehending the reasons for these differences, it will not be

possible to predict the impacts of an HSCT fleet on atmospheric properties

with any confidence, or to assign uncertainties to those predictions.

One might begin by comparing at least two of the models in sufficient
detail to understand the differences between them. Since transport formula-

tions are a major difference between models that is difficult to assess, a

useful approach might be to first compare the two models' chemical sensi-

tivity to aircraft injections, using a prescribed chemistry, time of year, and

initial conditions but including no transport. The results of such a compari-

son should be carefully documented and archived, so that there will be

sufficient information for making the same critical comparisons with other

models at a later time. Such explorations of differences between simula-

tions would not only strengthen the conclusions by demonstrating mecha-

nisms rather than simply giving results, but would also provide physical

insights that should allow extrapolation of the findings to other conditions
of interest. Once the chemical issues are better understood, the program

could begin to address dynamical and numerical differences among the models.

An approach of this type would be considerably more productive than run-

ning a large number of models to investigate further scenarios (e.g., other

Mach numbers).

Tropospheric Chemistry

The NASA assessment report shows that the current estimates of poten-

tial column-ozone depletion due to HSCT flight represent a partial cancella-

tion between ozone depletion above about 20 km and ozone formation be-

low. It is therefore important to examine and compare not just the total

ozone change in different models but also the vertical structure of ozone
concentrations. The differences between models are due in part to differ-

ences in the location of the formation/depletion "crossover" point, and in

part to the magnitude of tropospheric ozone changes. The organic chemis-

try related to these tropospheric ozone increases can be quite complex, and

is probably not considered in detail in all of the HSRP assessment models.

Furthermore, chemical species such as peroxyacetyl nitrate (PAN) are likely

to be important. Implications for climate change and other effects may be

present as well. A fuller evaluation of the assessment models' chemistry

and of non-methane hydrocarbon emissions by HSCT aircraft is indicated.

Links Between Models and Measurements

A strong link is needed between the program activities in modeling and

observing, both to permit identification of the successes and failures of the

models (compared to the real world revealed through observations) and to
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guide further model development. Clearly, one source of data for such

comparisons is aircraft data from campaigns of AESA and others. Addi-

tional useful information is available from observations from satellites, bal-

loons, and ground-based platforms. Both U.S. and non-U.S, studies could

be helpful. Among other campaigns, the upcoming European ozone study

(the Second European Stratospheric Arctic and Mid-latitude Experiment,
SESAME) may yield important new information on atmospheric chemical

composition relevant to HSRP. Observations of long-lived tracers from

UARS could also be used to evaluate the models' transport, especially in
the mid- to upper stratosphere in the tropics. Ground-based measurements

of 03, NO 2, and OCIO (chlorine dioxide) may also provide useful con-

straints on composition in certain regions.

A first step is provided by the AESA Models and Measurements report,

but it is important to narrow the comparisons to specific issues that are of

the highest relevance for HSRP. In several key areas, current observations

reveal potentially important problems with the models. For example, some

measurements suggest that the HC1/C1ONO 2 ratios in the lower stratosphere
might be very different from present model calculations. Also, the Models

and Measurements report notes that nearly all current 2-D models display

total ozone gradients that are weaker than those observed. This could imply
excessive dispersion not only of background ozone levels but also of HSCT

effluents, and thus perhaps result in an underestimation of HSCT-related

ozone changes. A systematic comparison of HSRP models to measure-

ments and a cataloguing of likely impacts on HSCT ozone-change estimates
is needed.

Assessment of Uncertainties and Sensitivities

The Interim Assessment points out a number of possibly important fac-
tors (e.g., increases in sulfate aerosol content, changes in the distribution

and frequency of polar stratospheric clouds, the nature of stratosphere-tro-

posphere exchange, or limitations of 2-D models) that have not yet been

assessed in detail. While a definitive evaluation of many of these issues is

probably not within reach of the current models' capabilities, the range of

possible impacts should be considered as sensitivity tests. Such sensitivity

tests are critical to the key task of bounding the uncertainties on present
calculations.

It should be noted that both chemical and dynamical uncertainties need
to be evaluated. Some of the major chemical issues are discussed below,

while dynamical questions were probed in the transport and dynamics sec-
tion of this chapter.

Important uncertainties still exist in the area of aerosol chemistry and

microphysics. Simulations should allow an evaluation of the possible ira-
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portance of tropical stratospheric clouds (for which there is already some

observational evidence). The possible importance of HSCT-related changes

in water vapor on the sulfuric acid fraction in aerosols, and hence on chemi-

cal perturbations due to stratospheric flight, should be tested. In addition,
several historical balloon aerosol data and results from modeling groups

have recently suggested that the large-scale stratospheric aerosol content is

altered by sulfur emissions from aircraft, and these emissions should be

considered quantitatively in sensitivity tests. A related issue is the sensitiv-

ity of HSRP-related ozone changes to variations in background aerosol loadings

in the stratosphere, particularly under volcanic conditions. Because higher

aerosol loads lead to saturation of the N205 conversion to HNO 3, variations

in background aerosols are likely to be quite important in determining ozone

depletion in response to HSCT emissions.

The possible role of polar stratospheric clouds (PSCs) has been consid-
ered in only a preliminary way so far as ozone effects are concerned, and
not at all so far as climate effects are concerned. The models should take

into account the role of PSCs that form both within and without the polar

vortex in HSCT-induced ozone depletion. Microphysical modeling is key

to understanding the formation and chemistry of PSCs. Further work should

be undertaken to narrow the uncertainties and to consider possible non-

equilibrium phenomena (e.g., supersaturation) and their implications for

HSRP assessment. An important aspect of these issues that has not yet been

addressed is the linkage between the program's microphysical studies and

the larger-scale 2-D models. It is also essential that the 2-D models begin

to incorporate PSC phenomena, guided by the more detailed microphysical

studies. This complex topic may well continue to require effort in the post-
1995 time frame.

An additional key question is the likelihood of increases in the fre-

quency of PSC occurrence because of the HSCT-related increases in NO y
and H20. If, for example, the latitude range of PSC occurrence were to be

increased due to HSCT enhancements in NOy abundances (particularly in
flight corridors), the influence on ozone depletion could be quite large;
these factors need not be restricted to local areas but could be transported

over much of the hemisphere. Some studies have begun to examine this

important possibility, but different groups have obtained substantially dif-
ferent results. The reasons for these differences need to be understood.

Other possible heterogeneous reactions should also be examined in greater

detail. For example, the role of nitrosylsulfuric acid should be quantita-

tively examined, and its impact (or lack thereof) both physically explained
and documented. Possible surface reactions involving formaldehyde, OH,

and HO 2 should also be considered, both in flight corridors and over broader
spatial scales.

The inputs of NO x, H20, CO, and other effluents relative to background
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levels is another issue to be examined. For example, convective transport

and lightning are likely to be important sources of reactive nitrogen injected

into the lower stratosphere, and their magnitudes relative to N20 oxidation
and HSCT emissions may be important in determining the ozone depletion.

The sensitivity of model results to various dehydration processes (e.g., the

assumed tropical input mixing ratios and polar dehydration rates) would
also be of interest.

The modeling studies might also productively consider a greater range

of possible parameters that could affect the design or operation of the HSCT

fleet. For example, it is clear that ozone depletion is sensitive to the alti-
tude of the injection. Both higher (up to 25 km) and lower (down to 15

km) flight altitudes should be considered in order to determine whether

there are threshold effects that must be considered. Indeed, the range of

altitudes studied should not be constrained by current flight plans, but rather

should reflect the scientific need to identify where such thresholds may lie.

The possibility that HSCT emissions could perturb the number of particles

present (at least locally) should be probed as well. If, for example, it were

to be found that emissions of sulfur could significantly increase aerosol

content and thus accelerate ozone losses, then detailed sensitivity tests would

be a key factor for specifying fuel requirements.

OTHER POSSIBLE EFFECTS OF HSCT EFFLUENTS

This section deals with issues of concern to the panel that cannot appro-
priately be included in the other parts of this evaluation.

Climate

The importance of the potential effects of an HSCT fleet on climate has

been recognized since the inception of the HSRP/AESA program. Indeed,

this topic is called out as one of the motivations for the program in the

initial Research Announcement. Nonetheless, the program has not thus far

addressed the climatic effects per se, as is acknowledged in the Interim

Assessment report. According to program management, this is the result of

a conscious decision to concentrate the program's resources on the ozone
problem.

The panel feels that the time has come to consider climatic effects.

One possible effect is tile influence of added water vapor on cirrus cloud

and contrail formation. A marked increase in the frequency of these con-
densed phases could significantly alter infrared radiation transfer and local

thermal structure, particularly in heavily used flight corridors and other

accumulation regions. Another effect is the alteration of the number, size

distribution, and cloud- and ice-nucleating properties of stratospheric aero-
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sols as a consequence of HSCT emissions of particles and condensable

vapors. The program should also consider possible climatic consequences
of incremental changes in stratospheric and upper tropospheric water vapor

concentrations (which can be as much as 40 percent, according to Table 1

of the Interim Assessment).

A further possible effect is an increase in the ozone content of the

upper troposphere due to subsonic aircraft emissions in combination with a
reduction in the lower stratosphere ozone content due to HSCT emissions.

Such a situation could lead to a significant alteration of the thermal balance

of the atmosphere. If this were to occur on a global scale, it might have one

sort of impact, whereas on a local scale it might have quite another--for

example, inducing vertical transport that might feed back to influence the

ozone column, or perhaps vertical displacement of the tropopause. The

potential revisions in AESA assessments that might result from greenhouse

gas-induced changes in temperatures should also be considered. (Note that

this point involves the impacts of changing climate on the HSCT assess-
ment, rather than the effects of HSCTs on climate.)

These possibilities are of sufficient concern that the program should
conduct an immediate first-cut assessment to ascertain whether further, more

detailed study is required. By 1995 it should thus be feasible to report on

potential climatic effects along with the effects on the ozone column.

Impact of Operational Constraints on the HSCT

One possible outcome of the HSRP/AESA program is that a HSCT fleet

would be subjected to operational constraints in order to minimize its atmo-

spheric impact. For example, limits might be placed on flight altitude and

flight path. There is a precedent for such actions in the prohibition of

supersonic aircraft overflight of densely populated areas in order to mini-

mize sonic-boom impact.

An attempt has been made to include one such possibility in the AESA

assessment by treating the flight Mach number parametrically, but there are

many more ways in which the design parameters of an HSCT could be
varied to meet environmental constraints while maintaining a viable trans-

portation system. It is the sense of the panel that the responsibility for

specifying such scenarios rests with elements of the HSRP program other
than AESA. However, it would be desirable for AESA management to take

the initiative to ensure that possible constraints are indeed studied by other

elements, and that their results can be considered for incorporation into
AESA model assessments.
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Limitations to AESA Assessments

Given the complexity of atmospheric phenomena and the limitations of

the present ability to model them, significant uncertainties remain as to the

potential impact of a fleet of HSCTs on stratospheric ozone. As mentioned

in earlier sections of this chapter, there are uncertainties because the atmo-

spheric models do not completely represent the three-dimensional atmo-
sphere. There are uncertainties in the representation of the physical and

chemical processes, particularly those that take place on surfaces. For in-

stance, soot may have the potential to catalytically destroy ozone, since it is

well known that ozone decomposes on reactive surfaces such as charcoal.

There are also some uncertainties about the actual composition of HSCT

engine emissions and about their chemical modification and dispersion in

the aircraft's wake. These uncertainties are of a major structural character,

not capable of being described by quantifiable error bounds.

Although some uncertainties are inevitable, it is essential that the pro-

gram reduce them to a minimum. It is equally important that they be

described clearly and that their magnitudes be estimated. To the extent that

atmospheric effects will constrain HSCT development and deployment, it is
likely that decisions on emissions will reflect the conservative end of the

uncertainty range. It is thus desirable that uncertainty estimates be kept as
low as feasible.

Unexpected Phenomena or "Surprises"

Beyond the specific concerns already discussed, it is especially impor-

tant that the program be conducted in such a way that all who are involved

in it are alert to the possible existence of entirely new phenomena that have

not been included in the models. Such phenomena might be found to modify

the effects of HSCT emissions by a factor of ten or even more, rather as

were found to enhance the effects of CFCs on ozone. In addition, there is

the long-term possibility that shifts in the global climate may make the

atmosphere more sensitive to HSCT effluents in the distant future than it is

likely to be in the near future. Only a robust measurement and prediction

methodology will make it possible to deal with this and other eventualities.
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Program Management

NASA's Atmospheric Effects of Stratospheric Aircraft (AESA) pro-

gram was established for the purpose of performing directed research in

support of the High-Speed Research Program (HSRP). Since the program is

concerned with the alteration of the upper troposphere and stratosphere, and

since the general chemistry and dynamics of these regions are topics of

vigorous scientific effort at present, the line between pure research and

research directed toward the programmatic goals is not easy to draw. None-
theless, it is clearly the intent of the sponsoring agency that AESA be more

focused and less individually directed than might be a group of atmospheric

research programs funded by the National Science Foundation.

In the view of the panel, the appropriate focus for AESA activities is to

develop appropriate computer models and to resolve uncertainties in mode[

calculations. This perspective means that the modeling program should

guide the choice of field measurements and laboratory experiments. Com-

mendable modeling activities have been carried out within AESA, but it is

the opinion of the panel that scientific leadership within the program has

generally resided on the field observations and laboratory experiment sides

rather than on the modeling side, perhaps due to a programmatic emphasis
on scenario evaluation. Studies with a clear link to model needs or to lines

of research suggested by model studies should receive preferential treat-
ment.

When the NRC panel was appointed, AESA had not compiled a priori-

tized list of key issues associated with the atmospheric effects of HSCTs.

33
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The original Research Announcement (NRA-89-OSSA-16) indicated areas

in which proposals would be welcome, however; they constituted an im-

plied list of the key issues toward which program research was to be di-

rected. Upon request of the panel, the AESA Program Manager provided

more explicit information on the current and projected future goals of the

program.

At its meetings and by correspondence, the panel generated its own list

of key present issues, restricting the list to the "top three" and "next five".

Those issues, and the justifications for so identifying them, are as follows:

Top Three Key Issues

• Uncertainties in the dispersion characteristics related to efflu-

ents in the lower stratosphere.

Justification: HSCT aircraft will inject reactive species into the

lower stratosphere in well-defined flight corridors. The resulting effects

will be determined to a great extent by the degree and time scale of effluent

dispersion.
• Effects of HSCT aircraft on climate.

Justification: The anticipated perturbations in water vapor load-

ings and ozone vertical distribution suggest that climate effects may be

important. However, no scoping study or more detailed work on this topic
has been carried out under AESA.

• Uncertainties in physical and chemical properties of stratospheric

aerosols and PSC particles.

Justification: Effects of condensed phases are important compo-

nents of the HSCT assessment. In spite of pioneering work on the subject

over 30 years ago, the compositions and morphologies of stratospheric aerosols

remain poorly understood, and consequently the applicability of laboratory

studies to stratospheric condensed phases thus remains undetermined.

Next Five Key Issues

• Accuracy of emission levels and flight scenarios.

Justification: Actual engines will be available about the end of this

decade. Because the accuracy of the emission estimates will directly reflect

the predictions of HSCT effects, every effort should be made to establish

realistic estimates as soon as possible.

• Uncertainty in modeling plume and wake chemistry and dy-
namics.

Justification: The results from these models, still under develop-

ment, will serve as input to the larger-scale atmospheric models. Work to
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date suggests that physical and chemical transformations in plumes and

wakes may be important in determining far-field emission signatures.
• Uncertainty in the adequacy of two-dimensional models for HSCT

impact assessment.

Justification: Much of the Interim Assessment relies on 2-D model

results. However, many aspects of the HSCT impact assessment are inher-

ently three-dimensional, and 3-D calculations need to be performed to guide

and improve the accuracy of 2-D formulations.
• Provision for adequate exploration of sensitivities of models to

changed parameters.
Justification: The assessment relies on models. It is therefore

necessary to understand the model parameters to which the computed im-

pacts of HSRP flight are most sensitive so as to maintain a realistic perspec-
tive on the model results.

• Provision for dealing with surprises.

Justification: As was shown in the case of the ozone hole, it is

conceivable that important factors completely unanticipated by any of the

AESA program activities could come to light. Contingency plans for mea-

surement and modeling should include provisions for responding promptly
to such eventualities.

Next, the panel compared its list with the Research Announcement's

implied list and the AESA Program Manager's lists of current and projected

(1993-1995) key issues. Although complete agreement on prioritization in

such a complex scientific and technological project would be surprising,

there are distinct areas of departure that merit discussion. In particular_ in

the opinion of the panel, gas-phase atmospheric-chemistry field measure-

ments have been overemphasized by being designated as key issues, whereas

the areas of aerosol particle observations and interpretation, dispersion, and
especially model-sensitivity studies should have been identified as key is-

sues early in the program and retained throughout.

Although several of the AESA program elements have definitely con-

tributed to a reduction in key uncertainties, the program goals, as well as

the plans for monitoring progress toward those goals, have not always been

completely clear. As a result, allocation of funds has at times been incon-

sistent with the AESA key uncertainties. The AESA, as an applied science

program, is responsible for providing an assessment of the potential atmo-

spheric impacts of an HSCT fleet that is both credible and timely enough to

offer maximum guidance to the aeronautics community. Fulfilling this mis-

sion requires that AESA objectives be clearly established and oriented to

HSCT effects, that program elements be related directly to those objectives,

that progress be actively monitored, and that the program be modified if

appropriate. Much of the activity supported in AESA is of great intrinsic
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merit and contributes substantially to the general understanding of atmo-

spheric processes, but significant portions of the work are not directed to-

ward specific AESA needs and/or are not consistent with the 1995 time-
table.

One example of this less-than-ideal allocation is the commitment of

AESA funds to Perseus aircraft development. The Perseus program, while

laudable from the point of view of atmospheric science, is unlikely to pro-

duce sufficient results germane to HSCTs within the 1993-1995 time frame

to justify a large funding commitment from the AESA program. A second

example is the AESA commitment to southern hemisphere aircraft cam-
paigns rather than to studies testing the more active northern hemisphere

flight corridors. This is not to suggest that pure science be ignored. The

panel feels that fundamental research should be supported as far as is com-

patible with achieving the central purpose of the AESA program: to answer
the driving questions within the requisite time. Indeed, a range of research

is needed to understand processes more fully, to reduce uncertainties in

conclusions yet to be derived, and to answer practical questions in time to
be useful.

The panel recommends that specific goals be established and widely

disseminated within the HSRP/AESA community, that scientists be sought

to address critical areas of research for which suitable proposals are not

forthcoming, and that goal realization and the monitoring of progress to-

ward those goals be explicitly included as aspects of program management.

To accomplish these tasks, we recommend an increase in hands-on guidance

and coordination by the Program Scientist, which might require the expan-

sion of this position to full time, and a change in the role of the Science

Advisory Committee to that of a Scientific Steering Committee charged
with more active program oversight.
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Conclusions and Recommendations

This chapter summarizes the findings (detailed in Chapters 2 and 3) of

the National Research Council's Panel on the Atmospheric Effects of Stratospheric

Aircraft, and presents related recommendations. The panel reviewed the

Interim Assessment report of the National Aeronautics and Space Administration's

program on the Atmospheric Effects of Stratospheric Aircraft (AESA), as

well as additional relevant information presented during panel meetings and

other AESA program reports.

It is the panel's view that the impact of high-speed civil transport (HSCT)

aircraft on the atmospheric environment can be evaluated only through models.
A hierarchy of models is required, ranging from microscale to plume and

wake-vortex to global two-dimensional and three-dimensional photochemi-

cal and dynamical models. All of these are being supported in greater or

lesser degree by AESA. In addition, as a result of an impressive amount of

work, aircraft emission scenarios for past and future aircraft emissions and

detailed three-dimensional data sets are also available for NO x and some
other species. However, virtually all of the modeling effort has been di-

rected toward assessment of the column depletion of ozone, a single mea-

sure of HSCT impact. While this is a crucial effect, it is not the only effect

that needs to be investigated. The conclusions and recommendations below

address this point and others that could enhance AESA's success.

The panel considers it essential that a clear picture of small-scale, lo-

calized processes in the wake and extended region behind the aircraft be

obtained within the next two years. The immediate effects of HSCT emis-

37
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sions in the wake-dispersion regime will be described by a plume/wake

model. Only one such model is currently under development, and it is still
some distance from completion. Thus, important detailed results are not yet

available, such as the distribution of SO, particle formation and evapora-
tion, and plume chemistry.

We recommend that AESA enhance this plume/wake model-

ing effort, and initiate validation studies using information recently

obtained through aircraft wake measurements both within and with-
out AESA. Additional measurements would be desirable, and wind-

tunnel experiments should be explored as well. Plans should be

made to incorporate plume model results into the larger-scale mod-
els.

The panel finds that an even more substantial database will be required

to yield the reliable input parameters (including chemical composition, tem-
peratures, and transport processes) needed to define the conditions of the

background atmosphere for global models. The Upper Atmosphere Re-
search Program and High-Speed Research Program aircraft measurements

have provided key data for AESA's purposes, including unprecedented in-

formation on 03 , CIO, BrO, OH, and HO 2, as well as on NOx/NOy, H20,
and atmospheric tracers in the lower stratosphere. A wealth of additional

data that could provide information on composition and transport processes

is available as well, particularly data derived from satellite measurements.

We recommend that NASA incorporate satellite data sets into

HSRP/AESA. The program management should organize the Up-

per Atmosphere Research Satellite data in timely fashion, particu-

larly those on aerosol and atmospheric tracer measurements such as

N_O and CH 4, and make them available to the HSRP modeling
community.

The panel commends the modeling community for including heteroge-

neous reactions on sulfate aerosols in the global atmospheric models that

provided the set of ozone-change predictions presented in the Interim As-

sessment. Although the predictions of changes in ozone column burden

agree reasonably well for low NO X emission indices, they exhibit consider-
able unexplained differences for high values.

We recommend that future modeling efforts include analyses

of the differences between the predictions made by various models.

Step-by-step comparisons for a limited number of models should be
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initiated to obtain detailed knowledge about where and why differ-
ences arise.

The panel concludes that the single number produced by each of the

six models to characterize the total ozone change is a useful initial measure

for the present assessment, but this number does not indicate the range of

uncertainty of the prediction. If uncertainties in model predictions of ozone

column depletion are to be reduced in the near future, as indicated in the

Interim Assessment, model performance must also be tested for realistic

treatment of chemical constituents and of plume transport and diffusion.

We recommend that for each prediction, an uncertainty range

be calculated that carefully considers key unknowns in chemical

and physical parameters, not only in kinetic rates. These ranges

will determine the level of confidence in model predictions, and
will thus serve as measures of the reduction of uncertainties as the

modeling efforts progress.

We recommend that assessments of HSCT impacts on ozone

and climate consider the full range of possible aircraft effluents,

particularly water vapor.

We recommend that sensitivity studies of transport circulation
become a part of model evaluations. Three-dimensional models

will be useful as benchmarks for such an effort. Ranges should be
selected with the aid of satellite and other data.

While the potential impact of polar and tropical stratospheric cloud

particles on the distribution of ozone has been recognized in the Interim

Assessment report, the panel notes that current AESA predictions do not

take into account chemistry on frozen particulate surfaces within polar strato-

spheric clouds. A more advanced assessment of HSCT impact will require

consideration of the chemistry of these clouds.

We recommend that work on microphysical models be pur-

sued to guide parameterization of microphysical processes in larger-
scale models.

The panel finds that impressive progress has been made in heteroge-
neous chemistry in the laboratory under AESA sponsorship. Results from

different groups for the reactions of N205 and CIONO 2 on sulfate surfaces
have converged, and those processes have now been incorporated into glo-

bal models. Surprises may still lie in wait, however. For example, the

differences between the particle concentrations observed in the Arctic and

the Antarctic stratospheres could be explained by the existence of meta-
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stable phases in nitric acid hydrate formation. Those phases could also play

a role in the chemistry of high-latitude flight corridors.

We recommend that future laboratory studies expand the range

of species to include SO x, organic molecules, and ternary systems.
Laboratory studies should also explore non-equilibrium conditions

for solid particle formation, in hopes of accounting for the presence

of metastable phases and the sometimes extensive supercooling of

condensable species.

The panel concludes that measurements of the composition and mor-

phology of stratospheric aerosols and polar stratospheric cloud particles are

still needed. We recognize that this is a challenging task, especially since
suitable instrumentation is not flight-ready.

We recommend that support for the development and field

deployment of new instruments (perhaps a variety of them) be pro-
vided, to permit better physical and chemical characterization of

particles.

The panel feels that the eruption of Mt. Pinatubo provided a unique

opportunity to study the effect of aerosol loading on ozone abundance and

heterogeneous processes. The background aerosol levels before the erup-
tion and the tremendous increase after June 1991 clearly indicate the effects

of the injection. Worldwide measurements showed the magnitude and dis-

persion of the aerosol cloud. While various studies of atmospheric changes

following the eruption have been performed, an organized effort within

AESA to review and analyze them could yield important information perti-

nent to the impact of an HSCT fleet. Some current models estimate that

aerosols will increase by a factor of two above the background level when

the fleet is fully operational.

We recommend an extensive, coordinated analysis of the evo-

lution of the Pinatubo aerosol cloud. This would provide important

calibration and sensitivity benchmarks for models that predict fu-

ture HSCT operation.

While the Interim Assessment acknowledges the possibility that the

operation of an HSCT fleet might affect the climate, the panel finds that

AESA has not adequately addressed its potential impact. Climatic changes

could occur through perturbations in water vapor and resultant additional

cloud formation, through formation of new aerosol particles, and through

modification of atmospheric thermal structure (in turn affecting atmospheric
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circulation and possibly tropopause level) due to decreases of 03 in the

stratosphere and increases of 03 in the troposphere.

We recommend that AESA draw up a plan for careful evalua-
tion of the nature and magnitude of potential HSCT-related cli-

matic changes. While this area may require effort that continues
beyond the 1995 time frame, the 1995 assessment must include

possible changes in climate as well as in ozone abundance.

The panel is aware that HSRP has been managed with a minimum of

personnel who were faced with the challenging task of directing activities
ranging from laboratory studies to large-scale field measurements. The

initial Research Announcement for solicitation of proposals specified gen-

eral research areas, but did not list precise goals to be accomplished within
a given time frame. Because such a list was never established, it has not

been possible to monitor the progress that has been made in terms of spe-
cific HSRP-related goals.

We recommend to HSRP management that the research over

the next two years focus on the outstanding HSCT issues, particu-

larly the potential impact on climate, the sensitivity studies of mod-

els, and the formation and dispersion of aerosols. Specific goals

should be established and carefully monitored.

We recommend as well that HSRP management consider in-

creasing the hands-on guidance and coordination provided by the

Program Scientist, perhaps to full time, and changing the role of

the Science Advisory Committee to that of a Scientific Steering
Committee charged with more active program oversight.





Chemical Formulae
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= Bromine monoxide

= Chlorine monoxide

= Reactive chlorine species
= Chlorine nitrate

= Carbon monoxide

= Carbon dioxide
= Methane

= Hydrochloric acid

= Hydroxyl radical

= Perhydroxyl radical

= Reactive hydrogen species (sum of HO and HO2)
= Water

= Sulfuric acid

= Nitric acid

= Nitric oxide

= Nitrogen dioxide

-- Reactive nitrogen species (sum of NO and NO2)

= HNO 3 + 2(N205) + NO 3 + HNO 4 + CIONO 2 + NO + NO 2
= Nitrous oxide

= Dinitrogen pentoxide
= Ozone

= Sulfur dioxide

= Reactive sulfur oxide species
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Abbreviations and Acronyms

2-D =

3-D =

AER =

AASE II =

ACMAP =
AESA =

ASHOE =

CFCs =

GSFC =

HSCT =

HSRP =

LLNL =

MAESA =

NAS =

NASA =
NCAR =

NRC =

PSC =
SESAME =

SPADE =

UARP =

UARS =

Two-dimensional (of models)

Three-dimensional (of models)

Atmospheric and Environmental Research, Inc.

Airborne Arctic Stratosphere Expedition II

Atmospheric Chemistry Modeling and Analysis Program

Atmospheric Effects of Stratospheric Aircraft program
Antarctic Southern Hemisphere Ozone Experiment

Chlorofluorocarbons

Goddard Space Flight Center

High-speed civil transport

High-Speed Research Program
Lawrence Livermore National Laboratory

Measurements for Assessing the Effects of

Stratospheric Aircraft
National Academy of Sciences

National Aeronautics and Space Administration

National Center for Atmospheric Research
NAS's National Research Council

Polar stratospheric cloud

Second European Stratospheric Arctic and

Mid-latitude Experiment

Stratospheric Photochemistry, Aerosols, and

Dynamics Expedition

Upper Atmosphere Research Program

Upper Atmosphere Research Satellite
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